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Abstract- Stunting is one of the main focuses of the 
government in Indonesia. This is because nutritional 
status is one of the benchmarks of community welfare. 
Stunting can be influenced by various societal aspects 
such as health, economy, social status, and education. 
One factor that is thought to be closely related to 
stunting is the level of education. Therefore, the 
prevalence of stunting and the level of education will 
be modeled; in this case, the mean years of schooling 
is used. Modeling uses two approaches: parametric 
through linear regression and nonparametric through 
local polynomial regression. This study compares both 
models to see which method better explains the 
stunting phenomenon. The comparison is made 
through the determination coefficient value or R2, Root 
Mean Square Error or RMSE, and the fitted curve plot. 
The results of R2 and RMSE for both models were 
obtained. The linear regression model has an R2 of 
32.94% and an RMSE of 4.84. Meanwhile, for the local 
polynomial model, it is R2 43.44% and RMSE 4.32. 
Based on these results, it can be concluded that local 
polynomial regression is better at modeling the 
relationship between the prevalence of stunting and 
mean years of schooling in Indonesia. This finding 
confirms that the polynomial local regression method 
can capture phenomena that occur for data that do not 
follow a particular pattern. 

 
1. Introduction 

Stunting is a significant public health issue 
characterized by toddlers having below-average height 
due to inadequate nutritional intake over an extended 
period. This condition can cause various future risks 
that can potentially reduce the quality of Human 
Resources (Huey & Mehta, 2016; Montenegro et al.). 
  

al., 2022; Raiten & Bremer, 2020). Stunting has long been a serious challenge for Indonesia, with its peak 
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occurring in 2013, where the prevalence reached 37% (Aryastami, 2017). The government's efforts have 
begun to show positive results, where, based on the 2023 Indonesian Health Survey, the prevalence of 
stunting has dropped to 21.5%, although it only dropped 0.1% from the previous year (Badan Kebijakan 
Pembangunan Kesehatan, Kementerian Kesehatan, 2023). However, this figure is still below the WHO 
threshold of less than 20% (De Onis et al., 2019). Therefore, more efforts are needed to reduce stunting 
rates, including finding the factors that cause stunting. 
The factors influencing stunting are very complex, including health, economic, social, and educational 
aspects. One factor that is thought to be closely related to stunting is the level of education. Several 
studies that have been conducted show that maternal education has a significant impact on the 
prevalence of stunting (Casale et al., 2018; Laksono et al., 2022; Makoka & Masibo, 2015; Tahangnacca et 
al., 2020). In this study, the Mean Year of Schooling will be used as a whole for both women and men. 
Higher education can increase public awareness of nutrition, sanitation, and childcare patterns, thus 
potentially reducing the risk of stunting. One method that can be used is regression analysis. This 
analysis is used to determine whether a variable affects another variable. The regression approaches are 
parametric, nonparametric, and semi-parametric. This study will use parametric and non-parametric 
approaches. In the parametric regression method, linear regression is used, while the nonparametric 
method is polynomial local regression. 
The Linear Regression approach relies on a predefined linear relationship between independent and 
dependent variables, which may not adequately represent complex data structures. As a parametric 
regression approach, it is also strict with the assumptions (Suparti et al., 2019). Its reliance on the 
assumption of linearity can lead to biased results if the true relationship is nonlinear. Furthermore, 
Linear Regression can also be sensitive to outliers and may not perform well when the data does not 
meet the assumptions of normality and homoscedasticity (Schmidt & Finan, 2018; Yang et al., 2019). 
However, Linear Regression is often simpler to implement and interpret, making it a popular choice for 
many applications. 
On the other hand, polynomial local regression can capture non-linear patterns that may occur. 
Polynomial local regression is a non-parametric method that estimates the relationship between 
dependent and independent variables by performing local regression around each data point. This 
method is adaptive to data fluctuations to capture different relationships across various independent 
variable values. This method also does not rely on the assumption of the relationship between the 
dependent and independent variables, so it is more flexible in detecting non-linear patterns (Fan & 
Gijbels, 1996; Miller & Hall, 2010). However, like other non-parametric regression methods, the resulting 
model is difficult to interpret, so it is more often displayed in a scatterplot. Polynomial regression 
produces equations that describe curves through linear slopes, making them difficult to interpret 
directly (Stimson et al., 1978). 
This study aims to compare the performance of classical linear regression models and polynomial local 
regression in modeling the relationship between mean years of schooling and prevalence of stunting. 
This approach is expected to identify whether the relationship between the two variables is linear or has 
a more complex pattern, so that the results can provide a better understanding of this relationship. 

 

2. Methods   

The methods used in this study are parametric linear regression and nonparametric polynomial local 
regression. 
 

(a) Data and Variables 
 
The data used in this study are data from 38 provinces in Indonesia in 2023. Data are retrieved from 
BPS-Statistics (Central Bureau of Statistics) Indonesia for Mean Years of Schooling. Meanwhile, stunting 
prevalence data results from the Indonesian Health Survey (Badan Kebijakan Pembangunan Kesehatan, 
Kementerian Kesehatan, 2023). The stunting data used is data on the prevalence of stunting in children 
aged 0-23 months. The variables used can be seen in Table 1: 
 
 
 
Table 1. Variables and Definitions 

Variable Definition Unit 
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   Y Prevalence of Stunting in Children Aged 0-23 Months Year 
X Mean Years of Schooling Percentage 

 

(b) The Steps of Analysis 
 
Data analysis was carried out with the help of R software and using the KernSmooth package. The steps 
taken in this study are: 
1. Data description  

At this stage, the condition of the data will be examined through descriptive analysis. 
2. Model prespesification  

Model prespecification aims to see the relationship between dependent and independent variables. 
One way to do this is by creating a scatterplot. 

3. Modeling using Linear Regression 
The regression curve describes the relationship between dependent and independent variables. 
Regression analysis can be divided into 3 based on the regression function: parametric, 
nonparametric, and semiparametric. The regression relationship can be modeled. The regression 
relationship can be modeled as: 

𝑌 = 𝑚(𝑋) + 𝜀       (1) 
where 𝑚 It is a regression function. 
Parametric Regression has a known function and has assumptions to be met. In Linear Regression, the 
form of 𝑚(. ): 

 𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ +⋯+ 𝛽𝑋      (2) 

Linear regression relies on several assumptions, including linearity, homoscedasticity, and absence of 
multicollinearity and autocorrelation (Gujarati & Porter, 2009). Violations of these assumptions can 
significantly impact model performance and interpretation. Meanwhile, Nonparametric Regression 
merely assumes that 𝑚(. ) It is a smooth function. The Nonparametric Regression function is unknown; 
hence, we cannot perform pre-specification to determine the form of the function (Härdle et al., 2004) 

4. Modeling the data using Polynomial Local Regression 
Approximation for the regression function 𝑚(𝑥) locally by a polynomial of order p using Taylor 
expansion (Fan & Gijbels, 1996): 

𝑚(𝑥) ≈ 𝑚(𝑥) + 𝑚′(𝑥)(𝑥 − 𝑥) +
𝑚′′(𝑥)

2!
(𝑥 − 𝑥)

ଶ +⋯+
𝑚()(𝑥)

𝑝!
(𝑥 − 𝑥)

 

Local polynomial regression works by performing a polynomial approximation around each point 𝑥 
Using weighted least squares, minimize:  

ቐ𝑌 −𝛽(𝑋 − 𝑥)




ୀ

ቑ

ଶ

𝐾(𝑋 − 𝑥)



ୀଵ

 

The weights are assigned using a kernel function (𝐾) such as Gaussian, so the bandwidth (h) must be 
optimized. One method to obtain the optimal h is to use the Direct Plug-in (DPI), which is defined as 
follows: 

ℎூ = 𝐶ଵ(𝐾) 
𝜎ොଵ

ଶ൫𝜆መெௌா൯(𝑏 − 𝑎)
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Further information is available in the following article (Ruppert et al., 1995). It is called local because each 
weight is assigned to each point 𝑥. The local linear estimator is a special case of the local polynomial 
estimator for 𝑝 = 1. Besides bandwidth, the order polynomial will also be optimized. 

5. Comparing the Linear Regression model with the Polynomial Local Regression model 
Comparisons are made based on the coefficient of determination and RMSE values. Comparisons are 
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also made in scatterplots that display the data and the models formed. 
6. Conclusion 

The model that best explains the relationship between these two variables will be concluded. The 
conclusion is drawn based on the value of the coefficient of determination, RMSE, and the fitting curve. 

 
3. Results and Discussion 

(a) Descriptive Statistics 
 
Descriptive statistics of this data are presented in Table 2: 
Table 2. Descriptive Statistics of Data 

Variable N Minimum Quartile 1 Mean Quartile 3 Maximum 
   Y 38 7.00 17.48 20.80 23.32 36.60 

X 38 3.720 8.115 8.706 9.422 11.450 
Based on the statistical information displayed in Table 2, the data tends to be homogeneous because the 
distribution is not too far apart. 

 
(b) Model Prespesification 

The respecification can be done by plotting the independent and dependent variables in a scatter plot. 
The result is in Figure 1. 

 
Figure 1. Scatter plot between Prevalence of Stunting and Mean Years of Schooling 
At the model specification stage, Figure 1 shows whether the relationship pattern between the 
dependent and independent variables follows a certain distribution pattern. The data does not follow a 
certain distribution. 
 

(c) Equation Linear Regression Model 

The estimated model of linear regression is as follows: 
𝑌 = 42.913 − 2.54𝑋 

With R2 32.94% and RMSE 4.84. This means that 32.94% of the variation in the prevalence of stunting 
can be explained by the mean years of schooling in the model. Other variables outside the model or 
random error explain the rest. A classical assumption test was carried out on the model, and the results 
showed that the model met the assumptions of normality, heteroscedasticity, and autocorrelation. The 
multicollinearity test is not needed because there is only one independent variable. Figure 2 shows a 
regression line plot that illustrates the relationship between the prevalence of stunting and mean years 
of schooling. 
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Figure 2. Scatter plot of Linear Regression Model 
Figure 2 shows that the regression line does not follow the data pattern but is at the average. 
 

(d) Polynomial Local Regression Model 

Optimum bandwidth obtained using the dpill function in the KernSmooth package. This function uses 
direct plug-in methodology. The obtained result is 0.6861906. The degree of the polynomial used is 
selected based on the following plot in Figure 3: 
 

 
Figure 3. Fitted Curve of Polynomial Local Regression with Different Order of p 
Based on Figure 2, the degree of the polynomial chosen is 1 because it looks smoother. Therefore, the 
shape of the fitted curve for local polynomial regression is in Figure 4: 
 

 
Figure 4. Fitted Curve of Polynomial Local Regression 
The model has R2 43.44% and RMSE 4.32. The Coefficient of Determination value of 43.44% means that 43.44% 
of the variation in the dependent variable (Y) can be explained by the model's independent variable (X). Other 
variables outside the model or random error explain the rest. 
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(e) Comparison 

The linear regression model and local polynomial regression model produced from data processing will be 
compared based on the values of the determination coefficient, RMSE, and the fitted curve obtained. This 
comparison is presented in Table 3: 

Table 3. Comparison Between the Two Models 

Method R2 RMSE 
Linear Regression  32.94% 4.84 
Plynomial Local Regression 43.44% 4.32 

Based on the Coefficient of Determination, it can be seen that the local polynomial model has a higher value. 
It means that the local polynomial model is better at explaining the effect of mean years of schooling on the 
prevalence of stunting. This is in line with the RMSE value, where the local polynomial model has a smaller 
RMSE value, which means this model is more appropriate. Furthermore, we compare the curves formed from 
each model in a plot in Figure 5: 
 

 

Figure 5. Fitting Curve of Polynomial Local Regression vs Linear Regression 
In Figure 5, the curve for the local polynomial regression model better fits the existing data than the curve 
for the linear regression model. 

(f) Discussion 

This comparison has also been done in previous studies. In a study by Ajona et al. (2022), they use 
multiple linear regression (MLR) and polynomial local regression (LPR). The conclusion: 1) the LPR 
model had a high R2 of 0.863, whereas the MLR model had a low value of 0.495; 2) The LPR model 
provided the best match, and it also explains the impact of conditioning factors on the biodegradation 
rate. The next study shows that LPR outperformed linear regression in predicting stock prices, with LPR 
achieving a slightly lower MAPE of 6.54% compared to 6.55% for linear regression (Satriyo et al., 2023). 
The next paper compares LPR and linear regression, finding that LPR with a Gaussian kernel is the best 
model for predicting Indonesia's non-oil and gas export values (Fauzi & Sofia Yanti, 2023).. Then, both 
models will be compared for sales forecasting in a snack food company. The result is that LPR has the 
lowest MAPE (Heni, Roberta et al., 2023). LPR captures nonlinearities and provides a flexible, data-
driven approach, unlike linear regression, which assumes a constant relationship across the dataset. The 
local method also minimizes the influence of outliers, enhancing forecasting accuracy for rainfall 
predictions (George et al., 2016). Based on these studies, we can conclude that LPR outperforms linear 
regression in various fields. 
In addition to comparing methods, many developments have been made to the LPR method, including 
combining it with a model to improve output gap estimates and forecasts (Fritz, 2021). LPR is sensitive 
to outliers, which can skew results. A novel framework introduces similarity kernels incorporating 
independent and dependent variables, enhancing robustness and accuracy in noisy environments 
(Shulman, 2025). The next paper introduces a novel local bandwidth estimation procedure for LPR. The 
method enhances accuracy and computational speed for large datasets (Samarov, 2015). LPR was also 
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developed for spatial data use (Kurisu & Matsuda, 2022). Besides the paper discussed here, many 
developments have been carried out to improve and enhance the performance of LPR. Therefore, it can 
be seen that this method still has much room to develop and become more powerful. In addition, this 
method can also be used in various fields. 

 
4. Conclusion 

It can be concluded that Polynomial Local Regression is better at modeling the Prevalence of Stunting 
and Mean Years of Schooling. The Polynomial Local Regression model can explain 43.44% of the 
variation in the Prevalence of Stunting, which is accounted for by Mean Years of Schooling. The fitting 
curve of the model is in Figure 6: 
 

 
Figure 6. Fitting Curve of Polynomial Local Regression 
For datasets characterized by non-linear relationships, Polynomial Local Regression will likely yield 
more accurate insights. This study's limitation is that it only uses one independent variable. For further 
research, it is recommended that other dependent variables be added so that the stunting phenomenon 
in Indonesia can be better explained. 
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