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Abstract- The Yellow virus is a virus that causes 

tomato plants to die. The insect vector Bemisia tabaci 

spreads this virus. The goal of this study is to identify 

the shape of a mathematical model of the influence of 

yellow virus on tomato plants via the insect Bemisia 

tabaci and the fungus Verticilliun lecanii, as well as to 

interpret the results of the mathematical model 

analysis. This is referred to as basic research. This 

study employs a descriptive method in which theories 

are analyzed in relation to the topics to be discussed, 

and these theories are based on a literature review. 

Stability analysis is carried out using Routh-Hurwitz 

criteria. It indicates that the disease-free equilibrium 

point is asymptotically stable when Λt = μtN and the 

endemic equilibrium point is asymptotically stable for 

𝑑1 > 𝑒1, 𝑑2 > 𝑒2 and a1 >
a1

2+a3
2a0

a3a2
. The model 

simulation shows that if the efficacy of Verticillium 

lecanii is high, the population of infected tomato 

plants, as well as the population of Bemisia tabaci, will 

go extinct. 

 

1. Introduction 

Tomatoes, which are members of the Solanaceae family, 

are the second most important fruit and vegetable crop 

after potatoes. Tomatoes are grown as fresh fruit and 

processed into processed items. Vitamins, carotenoids, 

and phenolic compounds are among the health-

promoting substances found in tomatoes. Tomatoes 

have become a model for the study of the growth of 

fleshy fruits, in addition to being economically and 

nutritionally important. Tomatoes are a fruit with 

obvious metabolic changes during fruit development 

(Quinet et al., 2019). 

According to 2020 horticultural statistics, the use of 

tomatoes plants is increasing year after year. The 

increased consumption of tomatoes necessitates an 
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increase in tomato plant output, yet there are various obstacles that cause tomato plant production to be 

less than optimal. The yellow virus that affects tomato plants is one of the causes of poor tomato plant 

productivity. The yellow virus is a pathogenic virus that is difficult to control since it lives as an 

obligatory paresis in plant cells, therefore eradicating the virus requires killing the host's cells or tissues 

(MAHENDRA et al., 2017). 

The first Yellow Virus was discovered in Israel in the late 1930s, and tomato farming in the Middle East 

has been seriously impacted since the 1960s. The yellow virus is carried naturally by the whitefly Bemisia 

tabaci. The Bemisia tabaci has a diverse host range. Initially, the yellow virus only infects weed species 

before spreading to kill nearby cultivated plants, one of which is tomato plants (Moriones & Navas-

Castillo, 2000). In 1989, the yellow virus was discovered destroying mangroves in Indonesia. The yellow 

virus was discovered to have affected chili plants in 2001. The yellow virus attack was so pervasive in 

2004 that 984,6 ha were infected, resulting in financial losses of Rp.7.31 billion and a yield losses of 20-

100% (Gunaeni et al., 2008). 

The entomopathogenic fungus Verticillium lecanii can inhibit the spread of this yellow virus. Verticillium 

lecanii, an entomopathogenic fungus, is an excellent fungus for eradicating Bemisia tabaci insects. The 

fungus Verticillium lecanii has the advantage of preventing the hatching of vector insect eggs. This fungus 

can also infect all stages of Bemisia tabaci, including nymphs and imago (detrivores), as well as natural 

enemies, including parasitoids and predators (Prayogo, 2014). This problem can be described 

mathematically to describe the real-world characteristics of the problem and also as a tool for policy 

planning and control. 

 

2. Methods   

The research is referred to as basic research by descriptive research methods. This study was carried out 

using a literature review, which entailed gathering books and references. The theories developed will 

be used to solve existing problems and draw conclusions. 

The following steps have been conducted to explain the model analysis: 

1. Identifying the problem to be modeled.  

2. Collecting and reviewing relevant theories about the problem. 

3. Determine the variables, parameters, and assumptions that will be used in the formation of the 

model.  

4. Forming a model of variables, parameters, and assumptions that have been determined. 

5. Analyzing the mathematical model that has been formed.  

6. Interpreting the results of the analysis  

7. Draw a conclusion. 

 

3. Results and Discussion 

(a) Mathematics Model  
 

Creating a mathematical model begins with determining the problem to be solved. This step identifies 

the critical aspects, such as assumptions, variables, and parameters.  

The following variables were used to create the mathematical model: 

S : The number of tomato plants that are susceptible to the yellow virus. 

I  : The number of tomato plants that infected with the yellow virus. 

SBT  : The number of vectors that is susceptible to the yellow virus. 

IBT : The number vector that is susceptible to the yellow virus infection. 

 

While parameters of the mathematical model are: 

𝛬𝑡 : The number of tillers or replanting of tomato plants. 

𝛬𝑏 : The number of births of the insect Bemisia tabaci. 

𝛿𝑡 : The effectiveness of the use of the fungus Verticillium lecanii. 

𝜇𝑡 : The natural death rate of tomato plants. 

𝜇𝑏 : The mortality rate of Bemisia tabaci insects. 

𝜃𝑏  : The mortality rate of the insect Bemisia tabaci caused by the fungus Verticillium lecanii. 

𝛼 : The infection rate of tomato plants. 
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𝛽 : The infection rate of the insect Bemisia tabaci. 

 

Assumptions in the formation of a mathematical model of the effect of the yellow virus on tomato plants 

through the insect Bemisia tabaci using the fungus Verticillium lecanii: 

1. Newly planted tomato plants are included in the Susceptible compartment. 

2. Bemisia tabaci insects that have not been infected are included in the susceptible compartment. 

3. Susceptible tomato plants will become infected if there is contact with infected Bemisia tabaci. 

4. Infected Bemisia tabaci insects will carry the yellow virus for the rest of their lives. 

5. The level of infection of tomato plants is incidental (occurs at any time). 

6. Tomato plants that have been infected with the yellow virus cannot recover. 

7. All populations of tomato plants were sprayed with Verticillium lecanii. 

 

The Variables, parameters, and assumptions of a mathematical model diagram of the effect of the yellow 

virus on tomato plants through the insect Bemisia tabaci using the fungus Verticillium lecanii are described 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of a Mathematical Model of the Effect of  the Yellow Virus  on Tomato Plants through Bemisia 

tabaci Insects Using the Verticillium lecanii Fungus 

 

Based on Figure 1, we get the mathematical model for yellow virus on tomato plants through the insect 

Bemisia tabaci using the fungus Verticillium lecanii as the following system: 

 
𝑑𝑆

𝑑𝑡
=  𝛬𝑡 − 𝛼(1 − 𝛿𝑡)𝑆𝐼𝐵𝑇 − 𝜇𝑡𝑆 (1) 

𝑑𝐼

𝑑𝑡
= 𝛼(1 − 𝛿𝑡)𝑆𝐼𝐵𝑇 − 𝜇𝑡𝐼 (2) 

𝑑𝑆𝐵𝑇

𝑑𝑡
= 𝛬𝑏 − 𝛽(1 − 𝛿𝑡)𝐼𝑆𝐵𝑇 − 𝜃𝑏𝛿𝑡𝑆𝐵𝑇𝑁𝑡 − 𝜇𝑏𝑆𝐵𝑇 (3) 

𝑑𝐼𝐵𝑇

𝑑𝑡
= 𝛽(1 − 𝛿𝑡)𝐼𝑆𝐵𝑇 − 𝜃𝑏𝛿𝑡𝐼𝐵𝑇𝑁𝑡 − 𝜇𝑏𝐼𝐵𝑇 (4) 

 

Where, (𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝑆𝐵𝑇(0) = 𝑆𝐵𝑇0
, 𝐼𝐵𝑇(0) = 𝐼𝐵𝑇0

). 

 

(b) Mathematical Model Analysis 

1. The Equilibrium Point of the Mathematical Model of the Spread of the 

Yellow Virus 
a. The Disease-Free Equilibrium Point 𝐸0 

When the population is stable, the equilibrium point represents a disease-free equilibrium point, 

which means there is no yellow virus in the population. The equilibrium point can be determined 

as follows: 

𝐸0 = (
𝛬𝑡

𝜇𝑡
, 0,

𝛬𝑏

𝜃𝑏𝛿𝑡𝑁𝑡+𝜇𝑏
, 0)  

 

b. The Endemic Equilibrium point (𝐸1) 

The equilibrium point (𝐸1) is the endemic equilibrium point. We get the endemic equilibrium 

point 

S 

IBT SBT 

I 

𝜇𝑏 

𝜇𝑡 𝜇𝑡 

𝜇𝑏 𝜃𝑏𝛿𝑡 𝜃𝑏𝛿𝑡 

𝛬𝑡 

𝛽(1 − 𝛿𝑡) 𝛼(1 − 𝛿𝑡) 

𝛬𝑏 
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𝐸1 = (𝑆∗, 𝐼∗, 𝑆𝐵𝑇
∗ , 𝐼𝐵𝑇

∗ ) follows: 

𝑆∗ =
𝛬𝑡𝛽𝜃𝑏𝛿𝑡𝑁𝑡(1 − 𝛿𝑡) + 𝐴𝑡𝛽(1 − 𝛿𝑡)𝜇𝑏 + 𝜃𝑏𝛿𝑡𝑁𝑡𝜇𝑡(𝜃𝑏𝛿𝑡𝑁𝑡 + 2𝜇𝑏) + 𝜇𝑏

2𝜇𝑡

𝜇𝑡𝜃𝑏𝛿𝑡𝑁𝑡𝛽(1 − 𝛿𝑡) + 𝜇𝑡𝜇𝑏𝛽(1 − 𝛿𝑡) + 𝛬𝑏𝛼𝛽(1 − 𝛿𝑡)
2  

 

𝐼∗ =
𝛬𝑡𝛬𝑏𝛼𝛽(1 − 𝛿𝑡)

2 − 𝜇𝑡
2𝜃𝑏𝛿𝑡𝑁𝑡(𝜃𝑏𝛿𝑡𝑁𝑡 + 2𝜇𝑏) + 𝜇𝑏

2𝜇𝑡
2

(𝜇𝑡𝜃𝑏𝛿𝑡𝑁𝑡𝛽(1 − 𝛿𝑡) + 𝜇𝑡𝜇𝑏𝛽(1 − 𝛿𝑡) + 𝛬𝑏𝛼𝛽(1 − 𝛿𝑡)
2)𝜇𝑡

 

 

𝑆𝐵𝑇
∗ =

(𝜇𝑡𝜃𝑏𝛿𝑡𝑁𝑡𝛽(1 − 𝛿𝑡) + 𝜇𝑡𝜇𝑏𝛽(1 − 𝛿𝑡) + 𝛬𝑏𝛼𝛽(1 − 𝛿𝑡)
2)𝜇𝑡

(1 − 𝛿𝑡)
2(𝜇𝑡𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑡𝜇𝑏 + 𝛬𝑡𝛽(1 − 𝛿𝑡))𝛼𝛽

 

 

𝐼𝐵𝑇
∗ =

𝛬𝑡𝛬𝑏𝛼𝛽(1 − 𝛿𝑡)
2 − 𝜇𝑡

2𝜃𝑏𝛿𝑡𝑁𝑡(𝜃𝑏𝛿𝑡𝑁𝑡 + 2𝜇𝑏) − 𝜇𝑏
2𝜇𝑡

2

(1 − 𝛿𝑡)(𝛬𝑡𝛽(1 − 𝛿𝑡)(𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏) + 𝜃𝑏𝛿𝑡𝑁𝑡𝜇𝑡(𝜃𝑏𝛿𝑡𝑁𝑡 + 2𝜇𝑏) + 𝜇𝑏
2𝜇𝑡)𝛼

 

 

 

2. Stability of The Mathematical Model 

Stability analysis of the equilibrium point is found by determining the eigenvalues of the Jacobian 

matrix in equations (1), (2), (3), and (4). While the Jacobian matrix is obtained as follows: 

Let 𝐶 = 𝛼(1 − 𝛿𝑡)𝐼𝐵𝑇 + 𝜇𝑡 
𝐷 = 𝛽(1 − 𝛿𝑡)𝐼 + 𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏 

We get the Jacobian Matrix 

𝐽 =

[
 
 
 

−𝐶 0 0 −𝛼(1 − 𝛿𝑡)𝑆

𝛼(1 − 𝛿𝑡)𝐼𝐵𝑇 −𝜇𝑡 0 𝛼(1 − 𝛿𝑡)𝑆

0 −𝛽(1 − 𝛿𝑡)𝑆𝐵𝑇 −𝐷 0

0 𝛽(1 − 𝛿𝑡)𝑆𝐵𝑇 𝛽(1 − 𝛿𝑡)𝐼 −(𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏)]
 
 
 

 

Since there are two equilibrium points, the stability analysis is carried out on the two equilibrium 

points. For the free-disease, the equilibrium point will be asymptotically stable if all the eigenvalues 

of the Jacobi matrix that are evaluated at the disease-free equilibrium point are negative. The Jacobian 

matrix of the equilibrium point E0 is as follows: 

 

𝐽(𝐸0) =

[
 
 
 
 
 
 −𝜇𝑡 0 0 −

𝛬𝑡𝛼(1−𝛿𝑡)

𝜇𝑡

0 −𝜇𝑡 0
𝛬𝑡𝛼(1−𝛿𝑡)

𝜇𝑡

0 −
𝛽(1−𝛿𝑡)𝛬𝑏

𝜃𝑏𝛿𝑡𝑁𝑡+𝜇𝑏
−(𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏) 0

0
𝛽(1−𝛿𝑡)𝛬𝑏

𝜃𝑏𝛿𝑡𝑁𝑡+𝜇𝑏
0 −(𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏)]

 
 
 
 
 
 

  

 

When |𝜆𝐼 − 𝐽(𝐸0)| = 0, we get the characteristic equation as 
1

μt(θbδtNt+μb)
((𝜆 + μt)(𝜆 + θbδtNt + μb)(a𝜆

2 + b𝜆 + c)) = 0, with 

 

a = μt𝜃𝑏𝛿𝑡𝑁𝑡 + μtμb,  

b = 𝜃𝑏
2𝛿𝑡

2𝑁𝑡
2𝜇𝑡 + 2μt𝜇𝑏𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏

2𝜇𝑡 + 𝜇𝑡
2𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑡

2μb 
c = 𝜃𝑏

2𝛿𝑡
2𝑁𝑡

2𝜇𝑡
2 + 2𝜃𝑏𝛿𝑡𝑁𝑡𝜇𝑡

2μb − 𝛬𝑡𝛬𝑏𝛼𝛽 + 2𝛬𝑡𝛬𝑏𝛼𝛽𝛿𝑡 − 𝛬𝑡𝛬𝑏𝛼𝛽𝛿𝑡
2 

Thus, for the free-disease equilibrium, stability occurs when  𝛬𝑡 = μt𝑁 and 0 < μt ≤ 1.  

While the endemic equilibrium point represents the disease's persistence in the population. 

Let 𝐹 = 𝛼(1 − 𝛿𝑡)IBT
∗ + 𝜇𝑡 

             𝐺 = 𝛽(1 − 𝛿𝑡)I
∗ + 𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏 

The Jacobian matrix of the equilibrium point E1 is: 

 

𝐽(𝐸1) =

[
 
 
 

−𝐹 0 0 −𝛼(1 − 𝛿𝑡)𝑆
∗

𝛼(1 − 𝛿𝑡)IBT
∗ −𝜇𝑡 0 𝛼(1 − 𝛿𝑡)𝑆

∗

0 −𝛽(1 − 𝛿𝑡)SBT
∗ −𝐺 0

0 𝛽(1 − 𝛿𝑡)SBT
∗ 𝛽(1 − 𝛿𝑡)I

∗ −(𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏)]
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We let  
𝑐1 = 𝛼(1 − 𝛿𝑡)IBT

∗ + 𝜇𝑡 
𝑐2 = 𝛼(1 − 𝛿𝑡)𝑆

∗ 
𝑐3 =  𝛼(1 − 𝛿𝑡)IBT

∗  
𝑐4 =  𝛽(1 − 𝛿𝑡)SBT

∗  
𝑐5 = 𝛽(1 − 𝛿𝑡)I

∗ + 𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏  
𝑐6 = 𝛽(1 − 𝛿𝑡)I

∗ 
𝑐7 = 𝜃𝑏𝛿𝑡𝑁𝑡 + 𝜇𝑏  

 

Then 

 

𝐽(𝐸1) = [

−𝑐1   0   0 −𝑐2

   𝑐3 −𝜇𝑡   0    𝑐2

  0 −𝑐4 −𝑐5   0
  0    𝑐4   𝑐6 −𝑐7

]  

 

The characteristic equation is obtained by setting |𝜆𝐼 − 𝐽(𝐸1)| = 0 

𝜆4 + (𝜇1 + 𝑐1 + 𝑐5 + 𝑐7)𝜆
3 + (𝜇1𝑐1 + 𝜇1𝑐5 + 𝜇1𝑐7 + 𝑐1𝑐7 + 𝑐1𝑐5 + 𝑐5𝑐7 − 𝑐2𝑐4)𝜆

2 + (𝜇1𝑐1𝑐7 + 𝜇1𝑐1𝑐5 +
𝜇1𝑐5𝑐7 + 𝑐1𝑐5𝑐7 + 𝑐2𝑐3𝑐4 + 𝑐2𝑐4𝑐6 − 𝑐1𝑐2𝑐4 − 𝑐2𝑐4𝑐5)𝜆 + 𝜇1𝑐1𝑐5𝑐7 + 𝑐1𝑐2𝑐4𝑐6 + 𝑐2𝑐3𝑐4𝑐5 − 𝑐1𝑐2𝑐4𝑐5 −
𝑐2𝑐3𝑐4𝑐6 = 0  

 

It can be written as 𝑎4𝜆
4 + 𝑎3𝜆

3 + 𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0 = 0, with  

𝑎4 = 1 

𝑎3 = 𝜇1 + 𝑐1 + 𝑐5 + 𝑐7  

𝑎2 = 𝜇1𝑐1 + 𝜇1𝑐5 + 𝜇1𝑐7 + 𝑐1𝑐7 + 𝑐1𝑐5 + 𝑐5𝑐7 − 𝑐2𝑐4  

𝑎1 = 𝜇1𝑐1𝑐7 + 𝜇1𝑐1𝑐5 + 𝜇1𝑐5𝑐7 + 𝑐1𝑐5𝑐7 + 𝑐2𝑐3𝑐4 + 𝑐2𝑐4𝑐6 − 𝑐1𝑐2𝑐4 − 𝑐2𝑐4𝑐5   

𝑎0 = 𝜇1𝑐1𝑐5𝑐7 + 𝑐1𝑐2𝑐4𝑐6 + 𝑐2𝑐3𝑐4𝑐5 − 𝑐1𝑐2𝑐4𝑐5 − 𝑐2𝑐3𝑐4𝑐6  

By using the Routh-Hurwitz Criteria we got the conclusion 

 

Theorem 1: 

If 𝑑1 > 𝑒1, 𝑑2 > 𝑒2, and 𝑎1 >
𝑎1

2+𝑎3
2𝑎0

𝑎3𝑎2
  then the endemic equilibrium point is asymptotically stable. 

Proof. 

By using the Routh-Hurwitz criteria, we must meet the following criteria to make the endemic 

equilibrium point asymptotically stable: 

𝑎4 > 0, 𝑎3 > 0, 𝑎1 > 0, 𝑎1𝑎2𝑎3 > 𝑎3
2 + 𝑎1

2𝑎4  

 

Then the characteristic equation𝑎4𝜆
4 + 𝑎3𝜆

3 + 𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0 = 0 can be obtained as follows: 

i) 𝑎4 > 0 
With 𝑎4 = 𝜇1 + 𝑐1 + 𝑐5 + 𝑐7   

Since all parameters are positive then 𝑎4 > 0 

ii) 𝑎1 > 0 
With 𝑎1 = 𝜇1𝑐1𝑐7 + 𝜇1𝑐1𝑐5 + 𝜇1𝑐5𝑐7 + 𝑐1𝑐5𝑐7 + 𝑐2𝑐3𝑐4 + 𝑐2𝑐4𝑐6 − 𝑐1𝑐2𝑐4 − 𝑐2𝑐4𝑐5  

Suppose: 
𝑑1 = 𝜇1𝑐1𝑐7 + 𝜇1𝑐1𝑐5 + 𝜇1𝑐5𝑐7 + 𝑐1𝑐5𝑐7 + 𝑐2𝑐3𝑐4 + 𝑐2𝑐4𝑐6   
𝑒1 = 𝑐1𝑐2𝑐4 + 𝑐2𝑐4𝑐5   

then 𝑎1 > 0 ⇔ 𝑑1 > 𝑒1 

 

iii) 𝑎0 > 0 
With 𝑎0 = 𝜇1𝑐1𝑐5𝑐7 + 𝑐1𝑐2𝑐4𝑐6 + 𝑐2𝑐3𝑐4𝑐5 − 𝑐1𝑐2𝑐4𝑐5 − 𝑐2𝑐3𝑐4𝑐6  

Suppose: 
𝑑2 = 𝜇1𝑐1𝑐5𝑐7 + 𝑐1𝑐2𝑐4𝑐6 + 𝑐2𝑐3𝑐4𝑐5   

𝑒2 = 𝑐1𝑐2𝑐4𝑐5 + 𝑐2𝑐3𝑐4𝑐6   

So 𝑎0 > 0 ⇔ 𝑑2 > 𝑒2 

 

iv) 𝑎3𝑎2𝑎1 > 𝑎1
2 + 𝑎3

2𝑎0 

With 𝑎1 >
𝑎1

2+𝑎3
2𝑎0

𝑎3𝑎2
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Since 𝑑1 > 𝑒1, 𝑑2 > 𝑒2, and 𝑎1 >
𝑎1

2+𝑎3
2𝑎0

𝑎3𝑎2
 are satisfied, the endemic equilibrium point is asymptotically 

stable. 

The basic reproduction number is a measurement that is used to determine whether or not a population 

is endemic. To calculate the basic reproduction number, we use the next generation matrix, where F is 

the transition matrix and V is the transmission matrix. 

F = [
0

𝛬tα(1−δt)

μt

𝛬bβ(1−δt)

θbδtNt+μb
0

] and V = [
μt 0
0 θbδtNt + μb

] 

The basic reproduction number (𝑅0) is the largest spectral radius or eigenvalue of the matrix (𝐹𝑉−1),  

thus it determines as: 

R0 =
(1−δt)

μt(θbδtNt+μb)
√𝛬t𝛬bαβ  

 

To simulate the model, we use Maple Software to show the trajectory near the steady states. The 

parameters used to simulate the model are: 

Table 1. The Model's Parameter Values Near Free Disease Equilibrium 

Parameter Value 

𝑁𝑡 50 

𝛬𝑡 10 

𝛬𝑏 8 

𝛿𝑡 0,8 

𝜇𝑡 0,2 
𝜇𝑏 0,07 
𝜃𝑏  0,05 
𝛼 0,03 
𝛽 0,2 

 

From the parameter values in Table 1, 𝑅0 will be calculated so that the basic reproduction number is 

obtained 𝑅0 = 0,3346958083.. Since 𝑅0 < 1, the free-disease equilibrium is asymptotically stable.  The 

parameter values in Table 1 then are substituted in the disease-free equilibrium 𝐸0 such that 𝐸0 =

(50, 0, 3.8647,0). The trajectory is given in Figure 2: 

 

  

(a) (b) 
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(c) (d) 

Figure 2. Trajectory around the Disease-Free Equilibrium Point (a) Graph 𝑆(𝑡), (b) Graph 𝐼(𝑡), (c) 

Graph 𝑆𝐵𝑇(𝑡), and (d) Graph 𝐼𝐵𝑇(𝑡) 

 

Based on Figure 2, with a disease-free equilibrium point 𝑆(0) = 50; 𝐼(0) = 0; 𝑆𝐵𝑇 (0) = 3.8647; 𝐼𝐵𝑇 (0) 

= 0 which is approximated by two initial values i.e.: 

 
𝑆(0) = 70; 𝐼(0) = 45; 𝑆𝐵𝑇(0) = 5; 𝐼𝐵𝑇(0) = 56 
𝑆(0) = 35; 𝐼(0) = 20; 𝑆𝐵𝑇(0) = 2; 𝐼𝐵𝑇(0) = 47 

This indicates that 𝐸0 is asymptotically stable and the value of 𝑅0 < 1, which means that within a 

certain time the spread of the yellow virus will disappear. 

While the simulation for the endemic equilibrium point uses the following parameter values: 

 
Table 2. The Model's Parameter Values Near Endemic Equilibrium 

Parameter Value 

𝑁𝑡 50 

𝛬𝑡 10 

𝛬𝑏 8 

𝛿𝑡 0,3 

𝜇𝑡 0,2 
𝜇𝑏 0,07 
𝜃𝑏  0,05 
𝛼 0,03 
𝛽 0,2 

 

From the parameter values in Table 2, 𝑅0 is calculated as 𝑅0 = 2.957159915. Since  𝑅0 > 1, then the 

equilibrium is asymptotically stable.  The endemic equilibrium is 𝐸1 = (27.59208, 22.40792, 2.02168,

7.73442). The following figure shows the trajectory near the steady states: 
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(a) (b) 

  

(c) (d) 

Figure 3. Trajectory Near the Yellow Virus Endemic Equilibrium Point (a) Graph 𝑆(𝑡), (b) Graph 𝐼(𝑡), 

(c) Graph 𝑆𝐵𝑇(𝑡), and (d) Graph 𝐼𝐵𝑇(𝑡) 
 

Based on Figure 3, with a endemic equilibrium point 𝑆(0) = 50; 𝐼(0) = 0; 𝑆𝐵𝑇 (0) = 3.8647; 𝐼𝐵𝑇 (0) 

which is approximated by two initial values i.e.: 

𝑆(0) = 20; 𝐼(0) = 23; 𝑆𝐵𝑇(0) = 3; 𝐼𝐵𝑇(0) = 15 
𝑆(0) = 27; 𝐼(0) = 31; 𝑆𝐵𝑇(0) = 7; 𝐼𝐵𝑇(0) = 19 

The numerical simulation shows 𝐸1 is asymptotically stable and  𝑅0 > 1, which means that the yellow 

virus will spread for a long time. 

 

(c) Interpretation 
 

Based on the stability analysis, the disease-free equilibrium point is asymptotically stable if 𝛬𝑡 = 𝜇𝑡𝑁 which 

means the yellow virus can disappear within a certain time. Meanwhile, the endemic equilibrium point will 

be asymptotically stable if 𝑑1 > 𝑒1, 𝑑2 > 𝑒2, and 𝑎1 >
𝑎1

2+𝑎3
2𝑎0

𝑎3𝑎2
 which means that the yellow virus will spread 

for a long time. 

The simulation results given indicated that if the parameter value of the effectiveness of the use of the fungus 

Verticillium lecanii is large, the population of infected tomato plants will decrease to extinction as well as the 

insect population of Bemisia tabaci. And conversely, if the parameter value of the effectiveness of using 

Verticillium lecanii is small, the yellow virus will spread for a long time. 
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4. Conclusion 

The mathematical model of the spread of the yellow virus in tomato plants is stated in the system of 

differential equations. There are two equilibrium points, namely the disease-free equilibrium point and 

the endemic equilibrium point. The stability analysis for disease-free equilibrium point is asymptotically 

stable if Λt = μtN and for the endemic equilibrium point it is asymptotically stable if d1 > e1, d2 > e2, 

and a1 >
a1

2+a3
2a0

a3a2
.  The numerical simulation model shows that if the effectiveness of the fungus 

Verticillium lecanii is large, the infected tomato plant population will decrease to extinction as well as the 

Bemisia tabaci insect population. 
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