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Abstract- Mathematical representation ability is one of 

the key competencies that reflects the depth of 

students’ conceptual understanding in mathematics 

learning. However, various studies show that 

mathematics education students still face difficulties 

in using and connecting multiple forms of 

representation, leading to limited conceptual 

understanding. This study aims to analyse students’ 

mathematical representation abilities using the APOS 

(Action, Process, Object, Schema) theoretical 

framework to reveal the underlying mental 

mechanisms. A qualitative descriptive method with 

data triangulation (test and interview) was employed. 

Six mathematics education students were selected and 

categorized into low (score < mean – SD), medium 

(mean – SD ≤ score < mean + SD), and high (score ≥ 

mean + SD) ability groups based on their mathematical 

representation test results. Data from tests and 

interviews were analysed through qualitative coding 

to ensure reliability and credibility. The findings 

indicate that low-ability students tended to remain at 

the Action stage, medium-ability students reached the 

Process stage, and high-ability students began to reach 

the Object and Schema stages. This study confirms that 

the quality of mathematical representation is closely 

related to students’ cognitive stages according to the 

APOS theory and introduces a novel link between 

representation indicators and APOS stages, offering 

valuable insights for mathematics education research. 

 
Copyright ©2020 The Authors. Published by Rankiang Mathematics Journal which 

permits unrestricted use, provided the original author and source are credited 

 

1. Introduction 

Mathematical representation is one of the important 

competencies that characterises students' conceptual 

understanding in mathematics learning. In  
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communicating ideas, external representationsd are needed in the form of actions (contextual), verbal, 

symbolic, visual, and real objects (physical) (NCTM, 2000; Umbara et al., 2019). Representations serve 

to: (1) inform teachers about how students think about mathematical content or ideas, (2) provide 

information about student patterns and trends, and (3) act as tools in the learning process. Student 

representations are not only useful for describing and communicating mathematical objects but also for 

working with mathematics, such as solving problems in mathematics and with mathematic (Wulandari 

et al., 2019). When students construct knowledge, it is important to know whether they can represent it 

to determine how much knowledge they have. 

 

Although important, a number of studies show that mathematics education students still face obstacles 

in using representations meaningfully. This is based on research (Yudhanegara et al., 2014) showing that 

students experience difficulties in representing mathematical expressions, namely creating images of 

equations or mathematical models from other given representations. Another study (Amaliyah AR & 

Mahmud, 2018) analysing students' problem-solving and mathematical representation abilities shows 

that the average achievement in solving geometry problems is in the moderate category at 64.81%.). 

Ikashaum (2021) also found errors made by students in creating symbolic representations in geometry 

problems, namely a lack of understanding of concepts, errors in reading the data contained in the 

images, and errors in performing mathematical operations. This condition implies a weak conceptual 

understanding because students tend to work algorithmically. This was also confirmed by Duval (2017), 

who stated that the main difficulty for students was not only in mastering one type of representation 

but also in the ability to translate between representations. In classroom practice, such difficulties often 

appear when students can compute algebraic solutions but fail to connect them with graphical or 

geometric representations. For instance, many students can correctly manipulate equations yet are 

unable to explain what the slope or area in a diagram represents, or they misinterpret three-dimensional 

geometric problems when translating them into symbolic form. These patterns indicate that students’ 

reasoning remains procedural and fragmented across representation types, limiting their ability to form 

integrated conceptual understanding. 

 

To understand how students construct mathematical representations, a cognitive theoretical framework 

is needed to describe their mental mechanisms. One theory widely used in mathematics education is the 

APOS Theory (Action, Process, Object, Schema) developed by Arnon et al., (2014) and Dubinsky & 

McDonald (2001). This theory explains how a mathematical concept is constructed through mental 

stages: from procedural actions (Action), internalisation of processes (Process), understanding concepts 

as objects (Object), to the formation of a complete knowledge structure (Schema)(Arnon, Cottrill, 

Dubinsky, et al., 2014; Dubinsky & McDonald, 2001; Fitria et al., 2024; Martínez-Planell & Cruz Delgado, 

2016; Orozco-santiago & Trigueros, 2008; Syamsuri & Marethi, 2018). The APOS theory has been applied 

in understanding and misconceptions in various areas of mathematics. For example, this theory has been 

used to study the learning of binomial expansion (Tatira, 2021; Tatira & Mukuka, 2024), exponential and 

logarithmic functions (Díaz-Berrios & Martínez-Planell, 2022; Okoye-Ogbalu & Nnadozie, 2023), 

calculus (Borji et al., 2018; Siyepu, 2013), trigonometry (Martínez-Planell & Cruz Delgado, 2016; Nabie 

et al., 2018; Padma Mike Putri M & Martin, 2024), geometry (Wulandari et al., 2019) and linear algebra 

(Mutambara & Bansilal, 2019). 

 

APOS is particularly suitable for analyzing mathematical representations because various mathematics 

education research scenarios, providing insights into students' each stage corresponds to different ways 

students express and connect mathematical ideas through various representational forms. At the Action 

stage, students tend to rely on external and procedural representations, such as symbolic manipulation 

or drawing figures mechanically, without deep conceptual links. The Process stage involves the 

internalization of these actions, where students begin to mentally operate on representations, for 

instance by interpreting how an algebraic formula corresponds to a graph or diagram. The Object stage 

marks the point when students can treat a representation as a coherent mathematical entity—such as 

recognizing a function graph not merely as a picture but as an object with properties and relationships. 

Finally, at the Schema stage, students integrate multiple representations (verbal, symbolic, graphical, 

and contextual) into a unified conceptual framework, enabling them to flexibly translate between them 

when solving problems. 

 

However, studies that integrate the analysis of mathematical representation abilities with the APOS 
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framework are still limited. Most previous studies have only focused on descriptive analysis of 

representation without mapping the underlying mental mechanisms. Conversely, APOS research has 

mostly highlighted the construction of mathematical concepts, but has not been specifically used to 

analyze how students construct and translate representations. This gap is the urgency of this study. 

Integrating APOS theory with representation analysis is expected to provide deeper insights into 

students’ cognitive development and how they transition from procedural to conceptual understanding. 

Such integration may also inform the design of instructional strategies that explicitly foster multi-

representational thinking and support more effective learning progression. 

 

Based on this gap, this article presents a novel approach by analyzing students' mathematical 

representation abilities through the perspective of APOS theory. This analysis not only describes 

students' achievements in various types of representations but also explores their cognitive stages 

(Action, Process, Object, Schema) in constructing representations. Thus, this study is expected to 

contribute theoretically by strengthening the role of APOS in the study of mathematical representations, 

as well as contributing practically by providing considerations in choosing learning strategies that can 

encourage students to transition towards a deeper conceptual understanding. 
 

2. Methods   

(a) Research Design 
 

This study is a descriptive qualitative study. This study describes how representations are used by 

students in constructing geometry. This study explores the thinking process in constructing 

evidence(Creswell & Creswell, 2018; Harisman et al., 2025). This study uses a qualitative approach for 

three reasons, namely: (1) the researcher as a key instrument, (2) inductive data analysis, and (3) holistic 

explanation. 

 

(b) Participant 
 

The analysis focused on identifying students’ cognitive stages (Action, Process, Object, Schema) and 

mapping them to their use of mathematical representations.This study was conducted at a state 

university in Padang province and involved 19 mathematics education students who had studied the 

subject of Plane and Solid Geometry. Furthermore, from the 19 students, 6 students will be selected, each 

of whom will represent high (score ≥ mean + SD), low (score < mean – SD), and moderate (mean – SD ≤ 

score < mean + SD) abilities for further interviews (Ebel & Friesbie, 1991). The six students were coded 

G1, G2, G3, G4, G5, and G6 to facilitate the analysis process. 

 

(c) Instrument 

Data were analysed using qualitative descriptive techniques involving data reduction, data display, and 

conclusion drawing as proposed by Creswell & Creswell (2018). The instrument used in this study was 

a mathematical representation test in the field of geometry consisting of 5 questions, which can be seen 

in the appendix. The questions were answered by the students, and the answers were analysed to trace 

how the students' representation process was carried out based on the APOS theory. The students' work 

will be reinforced through interviews conducted after the students have completed the test questions 

below. Thus, the essence of the proof task and interview transcripts will be obtained. The representation 

indicators used are presented in Table 1. 
Table 1. Representation Ability Indicators 

No Indicators Expected achievement 

1  Organising, recording, and 

communicating mathematical ideas   

1. Students are able to write down solutions in 
the form of tables, diagrams, graphs, 
pictures, equations, or words. 

2. Students can explain mathematical ideas 
through the chosen representation. 
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No Indicators Expected achievement 

2  Selecting, applying, and translating 

between different mathematical 

representations to solve problems. 

1. Students can move from verbal to symbolic 
representations, from tables to graphs, or 
from pictures to equations.. 

2. Students are able to use more than one 
type of representation to explain the 
solution to a problem. 

 

3  Using representations to model and 

interpret physical, social, and 

mathematical phenomena. 

1. Students are able to use graphs or models 

to understand and analyse real-life 

situations. 

2. Students can relate contextual problems to 

mathematical forms (for example, 

formulating equations from everyday 

problems). 

 

3. Results  

(a) Mathematical Representation Test Results 

Based on the results of the mathematical representation ability test, data was obtained on the scores of 

19 students, with a scoring scale of 0-3 for each question, where 0 means no answer was given, 1 means 

an answer was given but was incorrect, 2 means an answer was given that was partially correct, and 3 

means the answer was correct. The data on the results of the students' mathematical representation 

ability test based on the average per indicator can be seen in Table 2. 

 
Table 2. Mathematical Representation Ability Test Results 

No Representation Indicator Average Score 

1 Organising, recording, and communicating 

mathematical ideas   
1.71 

2 Selecting, applying, and translating between 

different mathematical representations to 

solve problems 

1.76 

3 Using representations to model and interpret 

physical, social, and mathematical 

phenomena. 

1.35 

 

Table 2 shows that students' representation skills are still quite low, as can be seen from the average 

student scores for each indicator, which are still far from the perfect score of 3. The highest average 

achievement of students is in indicator 2, which is 1.76. Meanwhile, the lowest representation ability is 

found in indicator 3, which is using representations to model and interpret physical, social, and 

mathematical phenomena, with an average score of 1.35.   

 

In addition to describing students' mathematical representation abilities in general, The test results were 

also used as a basis for selecting students with high, medium, and low abilities, namely G1, G2, G3, G4, 

G5, and G6. The six selected students were interviewed to explore their representation abilities in depth 

based on the APOS theory. 

 

(b) Analysis of Mathematical Representation Abilities with the APOS Theory 
 

Based on the student test results and interview results, data on the level of students' representation 

abilities based on the APOS theory was obtained from six students (G1, G2, G3, G4, G5, and G6). An 

overview of student abilities based on the APOS theory for each indicator can be seen in Table 3. 
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Table 3. Students' Mathematical Representation Ability Based on APOS Theory 

Students Representation Indicators 

1 2 3 

G1 Scheme Scheme Processes 
G2 Objects Processes Actions 
G3 Scheme Processes Actions 
G4 Processes Processes Processes 
G5 Actions Actions No Respon 
G6 Actions No respon Actions 

 

The following is a description of the research results based on the researcher's analysis in accordance 

with the representation indicators used. 

 

1. Organising, recording, and communicating mathematical ideas 

In the first indicator, there are four stages of mathematical ability demonstrated by students. The action 

stage appeared in students G5 and G6. The students' answers at the action stage can be seen in Figure 1. 

 

Figure 1. Answer G5 for question in indicator 1 

 

In this section, G5 uses algebraic principles, but does not understand what he is doing. When asked why 

he is looking for vectors AC and AH, G5 cannot explain. G5 can only copy what he vaguely remembers. 

This proves that G5 has only reached stage 1 of the indicators. Meanwhile, students who have reached 

the process stage can be seen in Figure 2. 

 

Determine the vector: 

normal vector 
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Translation : 

Distance between plane ACH and plane BEG? 

Answer: P = plane ACH intersects diagonal DF 

Q = plane BEG intersects diagonal DF 

 

𝐷𝑃 =
1

3
𝐷𝐹 

𝐹𝑄 =
1

3
𝐷𝐹 

𝐷𝐹 =  𝑎√3 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒: 𝐷𝑃 =
𝑎√3

3
 𝑐𝑚 

𝐹𝑄 =
𝑎√3

3
 𝑐𝑚 

The distance between plane 𝐴𝐶𝐻 and plane 𝐵𝐸𝐺 is 𝑃𝑄 
PQ =  DF −  OP −  FQ 

PQ =  𝑎√3 −  
𝑎√3

3
 −  

𝑎√3

3
 

PQ =  
𝑎√3

3
 

Figure 2. Answer G4 for question in indicator 1 

 

In Figure 2, it can be seen that G4 was able to identify the cube and the planes 𝐴𝐶𝐻 and 𝐵𝐸𝐺. G4 also wrote 

down the line intersecting planes 𝐴𝐶𝐻 and 𝐵𝐸𝐺, namely diagonal 𝐷𝐹. G4 identifies that 𝐷𝑃 = 𝐹𝑄 =
1

3
 𝐷𝐹 DF 

and 𝐷𝐹 = 𝑎√3 and calculates that 𝑃𝑄 =
𝑎

3
√3 When asked why 𝐷𝑃 = 𝐹𝑄 =

1

3
DF, G4 states that they know that 

the length is 1/3 of the length of the space diagonal, which they learned at school. However, G4 cannot prove 

this through algebraic or geometric representation. From the answer, G4 can already imagine and determine 

the line used to calculate the distance between planes 𝐴𝐶𝐻 and 𝐵𝐸𝐺. This indicates that G4 did not just draw 

and copy the question but was able to visualise the distance between planes ACH and BEG. However, G4 did 

not manipulate it algebraically to determine the exact distance between the two planes, so G4 reached the 

Process stage. Meanwhile, students who reached the Object stage can be seen from G2's answer in Figure 3. 

 

The distance between plane ACH and plane BEG is 𝑎/√3 

Figure 3. Answer G2 for question in indicator 1 

 

What is the distance between plane ACH and plane BEG? 

Distance from point B to plane ACH 

Equation of plane ACH 

Calculate the distance from point B to plane 
ACH 

Side length 𝑎 cm 

Answer 

Let point 𝐴(0,0,0) 
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For G2's answer to indicator 1, it can be seen that G2 can identify what is known from the question by drawing 

a picture and also by assuming coordinate points with 𝐴(0,0,0), 𝐵(𝑎, 0,0), . . . , 𝐻(𝑎, 𝑎, 𝑎). Next, G2 determines 

the equation of the 𝐴𝐶𝐻 plane and uses it to determine the distance between point B and the 𝐴𝐶𝐻 plane, which 

is connected by a perpendicular line to the 𝐴𝐶𝐻 plane. However, when asked to explain, G2 only rereads 

what they have written and is unable to connect the algebraic representation they have written with the given 

graphic representation. G2 also still relied on the formula without understanding its use in depth, even 

though G2 was able to write the equation and manipulate it to determine the distance between planes 𝐴𝐶𝐻 

and 𝐵𝐸𝐺. Therefore, G2 had reached the object stage. Next, for students who had reached the schema stage, 

the answers can be seen in Figure 4. 

 

 

Therefore, the distance between ACH and BEG is 3𝑎√3 

Figure 4. Answer G1 for question in indicator 1 

 

G1 correctly represented the distance between planes ACH and BEG by drawing an auxiliary line between 

the midpoint of line 𝐸𝐺, point Q, and the midpoint of line 𝐴𝐶, point 𝑃. G1 then connected points 𝑄 and 𝑃. 

Next, G1 drew line 𝐻𝑃, forming triangle 𝐻𝑃𝑄. Next, to make it easier to calculate the distance between the 

two planes, G1 represents triangle 𝐻𝑃𝑄 outside the cube 𝐴𝐵𝐶𝐷 𝐸𝐹𝐺𝐻. Then G1 draws a line from point 𝑄 to 

point 𝑅, which is the midpoint of line 𝐻𝑃, where line 𝑄𝑅, symbolised by G1 with 𝑥, is the distance between 

the two planes asked in the problem. G1 finds the length 𝑥 using the sine ratio of triangles 𝐻𝑃𝑄 and 𝐻𝑃𝑋, but 

G1 makes a mistake in the algebraic calculation and quickly realises this when asked.  In this case, G1 has 

shown that he is able to think from the action-object stage and connect the various representations well in 

writing and verbally, so that G1 has reached the Schema stage in indicator 1. 

 

2. Selecting, applying, and translating between various mathematical representations to solve problems  

For the second indicator, students were found to have achieved 3 stages, namely actions, process, and 

scheme. The student who could not be identified using the APOS theory was G6 because he did not 

respond to the questions in the problem. When asked to explain or think of an idea for the problem, G6 

was still unable to answer the questions. Meanwhile, G5 was able to reach the action stage, and G5's 

answer to indicator 2 can be seen in Figure 5. 

 

Translate : 

Because the edge of the cube is 1 cm 

The cube has 12 edges, and if there is no lid or 

base, there will be 8 

The cube has 4 sides without a lid or base 

To go around all sides, the path length is 4 cm 

Figure 5. Answer G5 for question in indicator 2 

 

To answer the question in indicator 2, G5 wrote down all the important information he obtained from 
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the question and concluded that to go around all sides, the length of the path would be 4 cm. From this 

answer, G5 was not yet able to choose a representation and imagine the process or solution in solving 

this mathematical problem. When explaining their answer, they reiterate what they have written. Here, 

G5 can only copy what is known, which identifies that G5 has the ability to reach the action stage for the 

second indicator. Furthermore, for students who have reached the process stage of thinking, their 

answers can be seen in Figure 6. 

 

Translation : 

Because the ant wants to walk from A to B,  

the width of the front side is 1 cm 

the width of the right side is 1 cm 

the width of the back side is 1 cm 

the total horizontal distance is 3 cm 

For the vertical distance, it is 1 cm 

so the distance =  √32 + 12 

=  √10 
Figure 6. Answer G3 for question in indicator 2 

 

In G3's answer, it can be seen that G3's first step was to present their answer by drawing a cube and identifying 

what was known about the cube, namely that the width of the front side was 1 cm, the width of the right side 

was 1 cm, and the width of the back side was 1 cm, and the total horizontal distance was 3 cm. For the vertical 

distance of 1 cm, the distance is found using the Pythagorean theorem, which is √10. During the interview, 

G3 explained his answer by saying that he imagined the cube's net, and from the cube's net, he found the 

shortest path, which was found using the Pythagorean theorem, namely √32 + 12. However, G3 was unable 

to explain how he arrived at 3 and 1 precisely, nor could he create a representation using cube nets when 

asked. This indicates that G3 has not yet reached the Object stage but is still at the Process stage. Meanwhile, 

G1 has not only reached the Object stage but has also reached the Scheme stage for the second indicator. G1's 

answer can be seen in Figure 7. 

 

 

The cube is opened, and the 

nets are as shown below 

 

 

 

The shortest path distance 

with the ant is √17 cm 

Figure 7. Answer G1 for question in indicator 2 

 

G1 is very capable of choosing and applying the appropriate representation in solving the given problem. G1 

also provides a clear explanation of how he made the cube net from the given problem. After making the cube 

net, G1 drew a straight line from 𝐴 to 𝐵′ to determine the distance from A to B, with the condition that it must 

pass through all sides of the cube. 𝐴 𝑡o 𝐵′ are connected by a straight line that shows the shortest distance 
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from A to B, so to determine the distance, G1 uses the Pythagorean theorem in the form of √(𝐴𝐴’)2 + (𝐴’𝐵’)2, 

which gives a final result of √17.  G1 is able to explore and use algebraic and geometric representations well, 

both in writing and orally. Therefore, in the second indicator, G1 has the ability to think at the Scheme level 

 

3. Using representations to model and interpret physical, social, and mathematical phenomena. 

 

In the third indicator, the highest stage achieved by new students is the process stage, which proves that for 

indicator 3, students' representation skills are still weak. In this indicator, there are students who did not 

respond, namely G5. Then, the students who reached the action stage were G5 and G3. G3's answer can be 

seen in Figure 8. 

 

Given : 

𝑟 = 30 cm 

 

Figure 8. Answer G3 for question in indicator 3 

 

From Figure 8, it can be seen that G3 is only able to write or copy what is known from the question and 

is not yet able to use mathematical representation in modelling oil in a tube either verbally or in writing, 

which proves that G5's ability has only reached the action stage. Meanwhile, the process stage is 

achieved by G1 and G4. G4's answer can be seen in Figure 9. 

 

 

Translation : 

Given : 𝑟 =  30 𝑐𝑚 

𝑡 =  90 𝑐𝑚 (length of the cylinder when horizontal) 

h from the floor =
1

2
 𝑟 =

1

2
 ∙ 30 =  15 𝑐𝑚 

Question : V 

Answer : V = area of the base segment × height of the cylinder   

V = area of the base segment ×90 cm 
Figure 9. Answer G4 for question in indicator 3 

 

In this answer, G4 wrote down all the important points in the question. G4 also explained that to 

determine the volume of oil, the area of the segment must be multiplied by the length (height) of the 

tube. Here, we can see that G4 is able to copy and create a strategy to represent the volume of oil. 

However, G4 is not yet able to create an equation for the area of the segment, so G1's ability has only 

reached the process stage. 

 

The results of the study indicate that students' mathematical representation abilities are still relatively 

low on all three NCTM indicators. The highest average score was on the indicators of selecting, applying, 

and translating representations (1.76), while the lowest score was on the indicator of using 

representations to model physical, social, and mathematical phenomena (1.35). These findings are 

consistent with the study by These results are in line with the findings of Nathan et al. (2002), which 

show a gap between students' abilities to understand and produce representations, especially between 

symbolic representations and graphs or table (Nathan et al., 2002). This means that low representation 

is not only a matter of technique but also a matter of difficulty in moving between representations. 

 

Through a more in-depth analysis via interviews with six students, a varied distribution of APOS 

cognitive stages was revealed. On the first indicator (organising, recording, and communicating 
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mathematical ideas), students with low abilities tended to only be at the Action stage, characterised by 

copying procedures or answers without conceptual understanding. This is in line with Huinker's (2015) 

argument about the importance of representational competence the ability to use various 

representations meaningfully to understand and communicate mathematical ideas(Huinker, 2015). 

 

In the second indicator (selecting, applying, and translating representations), the same pattern emerged. 

Low-ability students only wrote down basic information without imagining the problem-solving 

process, thus stopping at the Action stage. Intermediate-level students were able to reach the Process 

stage by trying to visualise cube nets, although they were not yet able to consistently connect the 

visualisation results with symbolic representations. High-ability students demonstrated an 

understanding of the Schema stage, such as G1, who was able to make cube nets, draw representative 

lines, and formulate solutions by flexibly combining visual and symbolic representations. These findings 

are parallel to Fonger's (2011) study, which developed an analytical framework for categorising inter-

representation relationships as indicators of representational fluency (Fonger, 2011). 

 

The third indicator (using representations to model phenomena) shows the most significant weakness. 

Even the best students were only able to reach the Process stage. New students could identify the volume 

of oil in a tube as the product of the area of the segment and the height, but failed to derive the 

mathematical equation. This is in line with Duval (2017) view that the biggest obstacle in mathematical 

representation lies in translation between registers, especially when connecting real-world phenomena 

with formal notation. Research has also shown that representation mismatches are often caused by 

students' different epistemological frameworks for mathematical and graphical representations, as 

demonstrated by Maries et al. (2020) in the context of physics (Maries et al., 2016). 

 

Overall, the results of this study indicate that students' mathematical representation abilities are closely 

related to the APOS cognitive stage. Students who stop at the Action stage tend to only produce 

procedural representations, while those who reach the Schema stage are able to effectively integrate 

representations and solve mathematical problems or contextual phenomena. This study also expands 

the use of APOS theory as an analytical tool for mathematical representation abilities based on the stages 

in APOS theory. These findings imply that learning needs to be explicitly designed to encourage 

students to transition from Action to Schema through the use of integrated multi-representations. This 

is in line with global research that emphasises the importance of representational fluency as the basis 

for developing deeper conceptual (Borji et al., 2018; Hill & Sharma, 2015; Okoye-Ogbalu & Nnadozie, 

2023; Tatira & Mukuka, 2024; Trigueros & Martínez-Planell, 2010). 

 

4. Conclusion 

This study shows that students' mathematical representation abilities are still at a relatively low level, 

especially in terms of using representations to model and interpret physical, social, and mathematical 

phenomena. Analysis based on APOS theory shows that low-ability students tend to stop at the Action 

stage, moderate-ability students are at the Process stage, while high-ability students can reach the Object 

and even Schema stages. These findings confirm that the quality of representation is closely related to 

the stages of students' cognitive development, where the transition from Action to Schema requires a 

more flexible and meaningful integration of multiple representations. 

 

The implication of this study is the importance of designing learning strategies that encourage students 

to explicitly connect various forms of mathematical representations, whether visual, symbolic, verbal, 

or contextual, so that they can build a more complete conceptual understanding. Further research is 

recommended to expand the context of the study to other mathematical topics, integrate digital 

technology-based approaches, and involve more participants from different institutions to obtain a more 

comprehensive picture of the relationship between representation abilities and cognitive stages 

according to APOS theory. However, this study is limited by its small sample size and focus on a single 

topic in geometry, which may restrict the generalisability of the findings. In addition, the qualitative 

nature of the research means that interpretations are context-dependent and may vary across different 

learning environments. Future research could employ mixed-method or longitudinal designs to 

examine how students’ representational fluency and cognitive transitions develop over time, as well as 

explore how technology-enhanced learning environments might support these cognitive progressions 
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within the APOS framework. 
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