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the key competencies that reflects the depth of
students’ conceptual understanding in mathematics
learning. However, various studies show that
mathematics education students still face difficulties
in using and connecting multiple forms of
representation, leading to limited conceptual
understanding. This study aims to analyse students’
mathematical representation abilities using the APOS
(Action, Process, Object, Schema) theoretical
framework to reveal the underlying mental
mechanisms. A qualitative descriptive method with
data triangulation (test and interview) was employed.
Six mathematics education students were selected and
categorized into low (score < mean — SD), medium
(mean — SD < score < mean + SD), and high (score >
mean + SD) ability groups based on their mathematical
representation test results. Data from tests and
interviews were analysed through qualitative coding
to ensure reliability and credibility. The findings
indicate that low-ability students tended to remain at
the Action stage, medium-ability students reached the
Process stage, and high-ability students began to reach
the Object and Schema stages. This study confirms that
the quality of mathematical representation is closely
related to students’ cognitive stages according to the
APOS theory and introduces a novel link between
representation indicators and APOS stages, offering
valuable insights for mathematics education research.

Copyright ©2020 The Authors. Published by Rankiang Mathematics Journal which
permits unrestricted use, provided the original author and source are credited

1. Introduction

Mathematical representation is one of the important
competencies that characterises students' conceptual
understanding in mathematics learning. In
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communicating ideas, external representationsd are needed in the form of actions (contextual), verbal,
symbolic, visual, and real objects (physical) (NCTM, 2000; Umbara et al., 2019). Representations serve
to: (1) inform teachers about how students think about mathematical content or ideas, (2) provide
information about student patterns and trends, and (3) act as tools in the learning process. Student
representations are not only useful for describing and communicating mathematical objects but also for
working with mathematics, such as solving problems in mathematics and with mathematic (Wulandari
et al., 2019). When students construct knowledge, it is important to know whether they can represent it
to determine how much knowledge they have.

Although important, a number of studies show that mathematics education students still face obstacles
in using representations meaningfully. This is based on research (Yudhanegara et al., 2014) showing that
students experience difficulties in representing mathematical expressions, namely creating images of
equations or mathematical models from other given representations. Another study (Amaliyah AR &
Mahmud, 2018) analysing students' problem-solving and mathematical representation abilities shows
that the average achievement in solving geometry problems is in the moderate category at 64.81%.).
Ikashaum (2021) also found errors made by students in creating symbolic representations in geometry
problems, namely a lack of understanding of concepts, errors in reading the data contained in the
images, and errors in performing mathematical operations. This condition implies a weak conceptual
understanding because students tend to work algorithmically. This was also confirmed by Duval (2017),
who stated that the main difficulty for students was not only in mastering one type of representation
but also in the ability to translate between representations. In classroom practice, such difficulties often
appear when students can compute algebraic solutions but fail to connect them with graphical or
geometric representations. For instance, many students can correctly manipulate equations yet are
unable to explain what the slope or area in a diagram represents, or they misinterpret three-dimensional
geometric problems when translating them into symbolic form. These patterns indicate that students’
reasoning remains procedural and fragmented across representation types, limiting their ability to form
integrated conceptual understanding.

To understand how students construct mathematical representations, a cognitive theoretical framework
is needed to describe their mental mechanisms. One theory widely used in mathematics education is the
APOS Theory (Action, Process, Object, Schema) developed by Arnon et al.,, (2014) and Dubinsky &
McDonald (2001). This theory explains how a mathematical concept is constructed through mental
stages: from procedural actions (Action), internalisation of processes (Process), understanding concepts
as objects (Object), to the formation of a complete knowledge structure (Schema)(Arnon, Cottrill,
Dubinsky, et al., 2014; Dubinsky & McDonald, 2001; Fitria et al., 2024; Martinez-Planell & Cruz Delgado,
2016; Orozco-santiago & Trigueros, 2008; Syamsuri & Marethi, 2018). The APOS theory has been applied
in understanding and misconceptions in various areas of mathematics. For example, this theory has been
used to study the learning of binomial expansion (Tatira, 2021; Tatira & Mukuka, 2024), exponential and
logarithmic functions (Diaz-Berrios & Martinez-Planell, 2022; Okoye-Ogbalu & Nnadozie, 2023),
calculus (Borji et al., 2018; Siyepu, 2013), trigonometry (Martinez-Planell & Cruz Delgado, 2016; Nabie
et al., 2018; Padma Mike Putri M & Martin, 2024), geometry (Wulandari et al., 2019) and linear algebra
(Mutambara & Bansilal, 2019).

APOS is particularly suitable for analyzing mathematical representations because various mathematics
education research scenarios, providing insights into students' each stage corresponds to different ways
students express and connect mathematical ideas through various representational forms. At the Action
stage, students tend to rely on external and procedural representations, such as symbolic manipulation
or drawing figures mechanically, without deep conceptual links. The Process stage involves the
internalization of these actions, where students begin to mentally operate on representations, for
instance by interpreting how an algebraic formula corresponds to a graph or diagram. The Object stage
marks the point when students can treat a representation as a coherent mathematical entity —such as
recognizing a function graph not merely as a picture but as an object with properties and relationships.
Finally, at the Schema stage, students integrate multiple representations (verbal, symbolic, graphical,
and contextual) into a unified conceptual framework, enabling them to flexibly translate between them
when solving problems.

However, studies that integrate the analysis of mathematical representation abilities with the APOS
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framework are still limited. Most previous studies have only focused on descriptive analysis of
representation without mapping the underlying mental mechanisms. Conversely, APOS research has
mostly highlighted the construction of mathematical concepts, but has not been specifically used to
analyze how students construct and translate representations. This gap is the urgency of this study.
Integrating APOS theory with representation analysis is expected to provide deeper insights into
students’ cognitive development and how they transition from procedural to conceptual understanding.
Such integration may also inform the design of instructional strategies that explicitly foster multi-
representational thinking and support more effective learning progression.

Based on this gap, this article presents a novel approach by analyzing students' mathematical
representation abilities through the perspective of APOS theory. This analysis not only describes
students' achievements in various types of representations but also explores their cognitive stages
(Action, Process, Object, Schema) in constructing representations. Thus, this study is expected to
contribute theoretically by strengthening the role of APOS in the study of mathematical representations,
as well as contributing practically by providing considerations in choosing learning strategies that can
encourage students to transition towards a deeper conceptual understanding.

2. Methods

(a) Research Design

This study is a descriptive qualitative study. This study describes how representations are used by
students in constructing geometry. This study explores the thinking process in constructing
evidence(Creswell & Creswell, 2018; Harisman et al., 2025). This study uses a qualitative approach for
three reasons, namely: (1) the researcher as a key instrument, (2) inductive data analysis, and (3) holistic
explanation.

(b) Participant

The analysis focused on identifying students’ cognitive stages (Action, Process, Object, Schema) and
mapping them to their use of mathematical representations.This study was conducted at a state
university in Padang province and involved 19 mathematics education students who had studied the
subject of Plane and Solid Geometry. Furthermore, from the 19 students, 6 students will be selected, each
of whom will represent high (score > mean + SD), low (score < mean — SD), and moderate (mean — SD <
score < mean + SD) abilities for further interviews (Ebel & Friesbie, 1991). The six students were coded
G1, G2, G3, G4, G5, and G6 to facilitate the analysis process.

(c) Instrument

Data were analysed using qualitative descriptive techniques involving data reduction, data display, and
conclusion drawing as proposed by Creswell & Creswell (2018). The instrument used in this study was
a mathematical representation test in the field of geometry consisting of 5 questions, which can be seen
in the appendix. The questions were answered by the students, and the answers were analysed to trace
how the students' representation process was carried out based on the APOS theory. The students' work
will be reinforced through interviews conducted after the students have completed the test questions
below. Thus, the essence of the proof task and interview transcripts will be obtained. The representation
indicators used are presented in Table 1.

Table 1. Representation Ability Indicators

No Indicators Expected achievement

1 Organising, recording, and 1. Students are able to write down solutions in
the form of tables, diagrams, graphs,
pictures, equations, or words.

2. Students can explain mathematical ideas
through the chosen representation.

communicating mathematical ideas
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No Indicators Expected achievement
2 Selecting, applying, and translating 1. Students can move from verbal to symbolic
between different mathematical representations, from tables to graphs, or

from pictures to equations..

2. Students are able to use more than one
type of representation to explain the
solution to a problem.

representations to solve problems.

3 Using representations to model and 1. Students are able to use graphs or models
interpret physical, social, and to understand and analyse real-life
mathematical phenomena. situations.

2. Students can relate contextual problems to
mathematical forms (for example,
formulating equations from everyday
problems).

3. Results

(a) Mathematical Representation Test Results

Based on the results of the mathematical representation ability test, data was obtained on the scores of
19 students, with a scoring scale of 0-3 for each question, where 0 means no answer was given, 1 means
an answer was given but was incorrect, 2 means an answer was given that was partially correct, and 3
means the answer was correct. The data on the results of the students' mathematical representation
ability test based on the average per indicator can be seen in Table 2.

Table 2. Mathematical Representation Ability Test Results

No Representation Indicator Average Score

1 Organising, recording, and communicating
N 1.71

mathematical ideas

2 Selecting, applying, and translating between
different mathematical representations to 1.76
solve problems

3 Using representations to model and interpret
physical, social, and mathematical 1.35

phenomena.

Table 2 shows that students' representation skills are still quite low, as can be seen from the average
student scores for each indicator, which are still far from the perfect score of 3. The highest average
achievement of students is in indicator 2, which is 1.76. Meanwhile, the lowest representation ability is
found in indicator 3, which is using representations to model and interpret physical, social, and
mathematical phenomena, with an average score of 1.35.

In addition to describing students' mathematical representation abilities in general, The test results were
also used as a basis for selecting students with high, medium, and low abilities, namely G1, G2, G3, G4,
G5, and G6. The six selected students were interviewed to explore their representation abilities in depth
based on the APOS theory.

(b) Analysis of Mathematical Representation Abilities with the APOS Theory

Based on the student test results and interview results, data on the level of students' representation
abilities based on the APOS theory was obtained from six students (G1, G2, G3, G4, G5, and G6). An
overview of student abilities based on the APOS theory for each indicator can be seen in Table 3.
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Table 3. Students' Mathematical Representation Ability Based on APOS Theory

Students Representation Indicators

1 2 3
Gl1 Scheme Scheme Processes
G2 Objects Processes Actions
G3 Scheme Processes Actions
G4 Processes Processes Processes
G5 Actions Actions No Respon
G6 Actions No respon Actions

The following is a description of the research results based on the researcher’s analysis in accordance
with the representation indicators used.

1. Organising, recording, and communicating mathematical ideas

In the first indicator, there are four stages of mathematical ability demonstrated by students. The action
stage appeared in students G5 and G6. The students' answers at the action stage can be seen in Figure 1.
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Figure 1. Answer G5 for question in indicator 1

In this section, G5 uses algebraic principles, but does not understand what he is doing. When asked why
he is looking for vectors AC and AH, G5 cannot explain. G5 can only copy what he vaguely remembers.
This proves that G5 has only reached stage 1 of the indicators. Meanwhile, students who have reached
the process stage can be seen in Figure 2.
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Translation :

Distance between plane ACH and plane BEG?

Answer: P = plane ACH intersects diagonal DF
Q = plane BEG intersects diagonal DF

DP — 1 DF The distance between plane ACH and plane BEG is PQ
3 PQ = DF — OP — FQ
== a3  aV3
A PR = av3— === %
DF = aV3 a3
av3 PQ = —
Therefore: DP = —-cm 3
aVv3
FQ = T cm

Figure 2. Answer G4 for question in indicator 1

In Figure 2, it can be seen that G4 was able to identify the cube and the planes ACH and BEG. G4 also wrote
down the line intersecting planes ACH and BEG, namely diagonal DF. G4 identifies that DP = FQ = é DF DF
and DF = av3 and calculates that PQ = %\/g When asked why DP = FQ = iDF, G4 states that they know that
the length is 1/3 of the length of the space diagonal, which they learned at school. However, G4 cannot prove
this through algebraic or geometric representation. From the answer, G4 can already imagine and determine
the line used to calculate the distance between planes ACH and BEG. This indicates that G4 did not just draw
and copy the question but was able to visualise the distance between planes ACH and BEG. However, G4 did
not manipulate it algebraically to determine the exact distance between the two planes, so G4 reached the

Process stage. Meanwhile, students who reached the Object stage can be seen from G2's answer in Figure 3.
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For G2's answer to indicator 1, it can be seen that G2 can identify what is known from the question by drawing
a picture and also by assuming coordinate points with A(0,0,0), B(a,0,0),...,H(a, a,a). Next, G2 determines
the equation of the ACH plane and uses it to determine the distance between point B and the ACH plane, which
is connected by a perpendicular line to the ACH plane. However, when asked to explain, G2 only rereads
what they have written and is unable to connect the algebraic representation they have written with the given
graphic representation. G2 also still relied on the formula without understanding its use in depth, even
though G2 was able to write the equation and manipulate it to determine the distance between planes ACH
and BEG. Therefore, G2 had reached the object stage. Next, for students who had reached the schema stage,
the answers can be seen in Figure 4.
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Figure 4. Answer Gl1 for question in indicator 1

G1 correctly represented the distance between planes ACH and BEG by drawing an auxiliary line between
the midpoint of line EG, point Q, and the midpoint of line AC, point P. G1 then connected points Q and P.
Next, G1 drew line HP, forming triangle HPQ. Next, to make it easier to calculate the distance between the
two planes, G1 represents triangle HPQ outside the cube ABCD EFGH. Then G1 draws a line from point Q to
point R, which is the midpoint of line HP, where line QR, symbolised by G1 with x, is the distance between
the two planes asked in the problem. G1 finds the length x using the sine ratio of triangles HPQ and HPX, but
G1 makes a mistake in the algebraic calculation and quickly realises this when asked. In this case, G1 has
shown that he is able to think from the action-object stage and connect the various representations well in
writing and verbally, so that G1 has reached the Schema stage in indicator 1.

2. Selecting, applying, and translating between various mathematical representations to solve problems
For the second indicator, students were found to have achieved 3 stages, namely actions, process, and
scheme. The student who could not be identified using the APOS theory was G6 because he did not
respond to the questions in the problem. When asked to explain or think of an idea for the problem, G6
was still unable to answer the questions. Meanwhile, G5 was able to reach the action stage, and G5's

answer to indicator 2 can be seen in Flgure 5.
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Figure 5. Answer G5 for question in 1nd1cator 2

To answer the question in indicator 2, G5 wrote down all the important information he obtained from
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the question and concluded that to go around all sides, the length of the path would be 4 cm. From this
answer, G5 was not yet able to choose a representation and imagine the process or solution in solving
this mathematical problem. When explaining their answer, they reiterate what they have written. Here,
G5 can only copy what is known, which identifies that G5 has the ability to reach the action stage for the
second indicator. Furthermore, for students who have reached the process stage of thinking, their
answers can be seen in Figure 6.
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Translation :

Because the ant wants to walk from A to B,
the width of the front side is 1 cm
the width of the right side is 1 cm
the width of the back side is 1 cm
the total horizontal distance is 3 cm
For the vertical distance, itis 1 cm
so the distance = V32 + 12
= V10

Figure 6. Answer G3 for question in indicator 2

In G3's answer, it can be seen that G3's first step was to present their answer by drawing a cube and identifying
what was known about the cube, namely that the width of the front side was 1 cm, the width of the right side
was 1 cm, and the width of the back side was 1 cm, and the total horizontal distance was 3 cm. For the vertical
distance of 1 cm, the distance is found using the Pythagorean theorem, which is V10. During the interview,
G3 explained his answer by saying that he imagined the cube's net, and from the cube's net, he found the
shortest path, which was found using the Pythagorean theorem, namely V32 + 12. However, G3 was unable
to explain how he arrived at 3 and 1 precisely, nor could he create a representation using cube nets when
asked. This indicates that G3 has not yet reached the Object stage but is still at the Process stage. Meanwhile,
G1 has not only reached the Object stage but has also reached the Scheme stage for the second indicator. G1's
answer can be seen in Figure 7.
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= %.\ e v ,w‘gde( ZXL adﬂfélh}ﬁcw\% with the ant is V17 cm

Figure 7. Answer Gl for question in indicator 2

G1 is very capable of choosing and applying the appropriate representation in solving the given problem. G1
also provides a clear explanation of how he made the cube net from the given problem. After making the cube
net, G1 drew a straight line from 4 to B’ to determine the distance from A to B, with the condition that it must
pass through all sides of the cube. A to B’ are connected by a straight line that shows the shortest distance
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from A to B, so to determine the distance, G1 uses the Pythagorean theorem in the form of /(44")? + (A'B’)?,
which gives a final result of V17. Gl is able to explore and use algebraic and geometric representations well,
both in writing and orally. Therefore, in the second indicator, G1 has the ability to think at the Scheme level

3. Using representations to model and interpret physical, social, and mathematical phenomena.

In the third indicator, the highest stage achieved by new students is the process stage, which proves that for
indicator 3, students' representation skills are still weak. In this indicator, there are students who did not
respond, namely G5. Then, the students who reached the action stage were G5 and G3. G3's answer can be
seen in Figure 8.

Given: <— c Dot c. 10 Un
- -/ ot ke S
r=30cm k> 90 cm .
b = W 1’1240 :‘rc/y:-(

Figure 8. Answer G3 for question in indicator 3

From Figure 8, it can be seen that G3 is only able to write or copy what is known from the question and
is not yet able to use mathematical representation in modelling oil in a tube either verbally or in writing,
which proves that G5's ability has only reached the action stage. Meanwhile, the process stage is
achieved by G1 and G4. G4's answer can be seen in Figure 9.
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Translation :

Given:r = 30cm
t = 90 cm (length of the cylinder when horizontal)
hfromtheﬂoor=%r =% *30= 15cm
Question : V
Answer : V = area of the base segment X height of the cylinder
V = area of the base segment X90 cm

Figure 9. Answer G4 for question in indicator 3

In this answer, G4 wrote down all the important points in the question. G4 also explained that to
determine the volume of oil, the area of the segment must be multiplied by the length (height) of the
tube. Here, we can see that G4 is able to copy and create a strategy to represent the volume of oil.
However, G4 is not yet able to create an equation for the area of the segment, so G1's ability has only
reached the process stage.

The results of the study indicate that students' mathematical representation abilities are still relatively
low on all three NCTM indicators. The highest average score was on the indicators of selecting, applying,
and translating representations (1.76), while the lowest score was on the indicator of using
representations to model physical, social, and mathematical phenomena (1.35). These findings are
consistent with the study by These results are in line with the findings of Nathan et al. (2002), which
show a gap between students' abilities to understand and produce representations, especially between
symbolic representations and graphs or table (Nathan et al., 2002). This means that low representation
is not only a matter of technique but also a matter of difficulty in moving between representations.

Through a more in-depth analysis via interviews with six students, a varied distribution of APOS
cognitive stages was revealed. On the first indicator (organising, recording, and communicating
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mathematical ideas), students with low abilities tended to only be at the Action stage, characterised by
copying procedures or answers without conceptual understanding. This is in line with Huinker's (2015)
argument about the importance of representational competence the ability to use various
representations meaningfully to understand and communicate mathematical ideas(Huinker, 2015).

In the second indicator (selecting, applying, and translating representations), the same pattern emerged.
Low-ability students only wrote down basic information without imagining the problem-solving
process, thus stopping at the Action stage. Intermediate-level students were able to reach the Process
stage by trying to visualise cube nets, although they were not yet able to consistently connect the
visualisation results with symbolic representations. High-ability students demonstrated an
understanding of the Schema stage, such as G1, who was able to make cube nets, draw representative
lines, and formulate solutions by flexibly combining visual and symbolic representations. These findings
are parallel to Fonger's (2011) study, which developed an analytical framework for categorising inter-
representation relationships as indicators of representational fluency (Fonger, 2011).

The third indicator (using representations to model phenomena) shows the most significant weakness.
Even the best students were only able to reach the Process stage. New students could identify the volume
of o0il in a tube as the product of the area of the segment and the height, but failed to derive the
mathematical equation. This is in line with Duval (2017) view that the biggest obstacle in mathematical
representation lies in translation between registers, especially when connecting real-world phenomena
with formal notation. Research has also shown that representation mismatches are often caused by
students' different epistemological frameworks for mathematical and graphical representations, as
demonstrated by Maries et al. (2020) in the context of physics (Maries et al., 2016).

Overall, the results of this study indicate that students' mathematical representation abilities are closely
related to the APOS cognitive stage. Students who stop at the Action stage tend to only produce
procedural representations, while those who reach the Schema stage are able to effectively integrate
representations and solve mathematical problems or contextual phenomena. This study also expands
the use of APOS theory as an analytical tool for mathematical representation abilities based on the stages
in APOS theory. These findings imply that learning needs to be explicitly designed to encourage
students to transition from Action to Schema through the use of integrated multi-representations. This
is in line with global research that emphasises the importance of representational fluency as the basis
for developing deeper conceptual (Borji et al., 2018; Hill & Sharma, 2015; Okoye-Ogbalu & Nnadozie,
2023; Tatira & Mukuka, 2024; Trigueros & Martinez-Planell, 2010).

4. Conclusion

This study shows that students' mathematical representation abilities are still at a relatively low level,
especially in terms of using representations to model and interpret physical, social, and mathematical
phenomena. Analysis based on APOS theory shows that low-ability students tend to stop at the Action
stage, moderate-ability students are at the Process stage, while high-ability students can reach the Object
and even Schema stages. These findings confirm that the quality of representation is closely related to
the stages of students' cognitive development, where the transition from Action to Schema requires a
more flexible and meaningful integration of multiple representations.

The implication of this study is the importance of designing learning strategies that encourage students
to explicitly connect various forms of mathematical representations, whether visual, symbolic, verbal,
or contextual, so that they can build a more complete conceptual understanding. Further research is
recommended to expand the context of the study to other mathematical topics, integrate digital
technology-based approaches, and involve more participants from different institutions to obtain a more
comprehensive picture of the relationship between representation abilities and cognitive stages
according to APOS theory. However, this study is limited by its small sample size and focus on a single
topic in geometry, which may restrict the generalisability of the findings. In addition, the qualitative
nature of the research means that interpretations are context-dependent and may vary across different
learning environments. Future research could employ mixed-method or longitudinal designs to
examine how students’ representational fluency and cognitive transitions develop over time, as well as
explore how technology-enhanced learning environments might support these cognitive progressions
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within the APOS framework.
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